Sistema Endocrino - Química e mecanismos de Ação dos Hormônios


Endocrinologia– estudo das secreções internas do organismos.

O sistema endócrino tem como função coordenar e integrar a atividade das células em todo o organismo por meio da regulação das funções celular e orgânica e pela manutenção da homeostasia durante toda a vida. A homeostasia, isto é, a manutenção de um meio interno constante, é de suma importância para assegurar a função apropriada das células.

SISTEMA ENDÓCRINO

FUNÇÕES FISIOLÓGICAS

Algumas das principais funções do sistema endócrino são as seguintes:

• Regulação do equilíbrio do sódio e da água, além de controle do volume sanguíneo e da pressão arterial.

• Regulação do equilíbrio do cálcio e do fosfato para preservar as concentrações no líquido extracelular necessárias à integridade da membrana celular e à sinalização intracelular.

• Regulação do balanço energético e controle da mobilização, da utilização e do armazenamento da energia para assegurar o suprimento das demandas metabólicas celulares.

• Coordenação das respostas contrarreguladoras hemodinâmicas e metabólicas do hospedeiro ao estresse.

• Regulação da reprodução, do desenvolvimento, do crescimento e do processo de envelhecimento.

Na descrição clássica do sistema endócrino, um mensageiro químico, denominado hormônio, produzido por determinado órgão, é liberado na circulação para produzir um efeito sobre um órgão-alvo distante. Na atualidade, o sistema endócrino é definido como uma rede integrada de múltiplos órgãos, de diferentes origens embriológicas, que liberam hormônios, incluindo desde pequenos peptídeos a glicoproteínas, que exercem seus efeitos em células-alvo próximas ou distantes. Essa rede endócrina de órgãos e mediadores não atua de maneira isolada e está estreitamente integrada com os sistemas nervosos central e periférico, além do sistema imune, levando ao uso de uma nova terminologia atual, como “neuroendócrino” ou “neuroendócrino imune”, para descrever essas interações. O sistema endócrino é constituído essencialmente por três componentes básicos.

Glândulas endócrinas – As glândulas endócrinas clássicas carecem de ductos e, por isso, secretam seus produtos químicos (hormônios) no espaço intersticial, a partir do qual passam para a circulação. Diferentemente dos sistemas cardiovascular, renal e digestório, as glândulas endócrinas não têm conexão anatômica e estão distribuídas por todo o corpo (Figura 1.1). A comunicação entre os diferentes órgãos é assegurada pela liberação de hormônios ou neurotransmissores.

Hormônios – Os hormônios são produtos químicos, liberados pela célula em quantidades muito pequenas, que exercem uma ação biológica sobre uma célula-alvo. Eles podem ser liberados das glândulas endócrinas (i.e., insulina, cortisol), do cérebro (i.e., hormônio de liberação da corticotrofina [CRH], ocitocina e hormônio antidiurético) e de outros órgãos, como o coração (peptídeo natriurético atrial), o fígado (fator de crescimento semelhante à insulina 1) e o tecido adiposo (leptina).

Órgão-alvo – O órgão-alvo contém células que expressam receptores hormonais específicos e que respondem à ligação de determinado hormônio com uma ação biológica demonstrável.

Química e mecanismos de Ação dos hormônios

Com base em sua estrutura química, os hormônios podem ser classificados em proteínas (ou peptídeos), esteroides e derivados de aminoácidos (aminas). A estrutura do hormônio é que determina, em grande parte, a localização do receptor hormonal; as aminas e os hormônios peptídicos ligam-se a receptores situados na superfície celular, enquanto os hormônios esteroides têm a capacidade de atravessar as membranas plasmáticas, ligando-se a receptores intracelulares. Uma exceção a essa generalização é o hormônio tireoidiano, um hormônio derivado de aminoácido, que é transportado na célula para sua ligação a um receptor nuclear. A estrutura do hormônio também influencia sua meia-vida. As aminas são as que apresentam meia-vida mais curta (2 a 3 minutos), seguidas dos polipeptídeos (4 a 40 minutos), dos esteroides e das proteínas (4 a 170 minutos) e dos hormônios tireoidianos (0,75 a 6,7 dias).

Hormônios proteicos ou peptídicos
Os hormônios proteicos ou peptídicos constituem a maioria dos hormônios. Moléculas compostas de 3 a 200 resíduos de aminoácidos, esses hormônios são sintetizados na forma de pré-pró-hormônios e sofrem processamento pós-tradução, sendo armazenados em grânulos secretores antes de sua liberação por exocitose (Figura 1.2), por meio de um processo que lembra a liberação dos neurotransmissores das terminações nervosas. Entre os exemplos de hormônios peptídicos, destacam-se a insulina, o glucagon e o hormônio adrenocorticotrófico (ACTH). Alguns dos incluídos nessa categoria, como os hormônios gonadotróficos, hormônio luteinizante (LH) e o hormônio folículo estimulante (FSH), juntamente com o hormônio tireoestimulante (TSH) e a gonadotrofina coriônica humana, contêm carboidratos e, por isso, são denominados glicoproteínas. Os componentes de carboidrato desempenham um importante papel na determinação das atividades biológicas e das taxas de depuração dos hormônios glicoproteicos na circulação.

Hormônios esteroides
Os hormônios esteroides derivam do colesterol e são sintetizados no córtex da suprarrenal, nas gônadas e na placenta. São lipossolúveis, circulam no plasma ligados às proteínas e atravessam a membrana plasmática para se ligarem a receptores intracelulares citosólicos ou nucleares. A vitamina D e seus metabólitos também são considerados hormônios esteroides. A síntese desses hormônios é descrita mais adiante.

Hormônios derivados de aminoácidos
Os hormônios derivados de aminoácidos são sintetizados a partir do aminoácido tirosina e incluem as catecolaminas noradrenalina, adrenalina e dopamina, além dos hormônios tireoidianos, que derivam da combinação de dois resíduos do aminoácido tirosina que são iodados. A síntese do hormônio tireoidiano e das catecolaminas é descrita nos Capítulos 4 e 6, respectivamente.

Efeitos dos hormônios
Dependendo do local onde o efeito biológico de determinado hormônio é produzido em relação ao local de sua liberação, ele pode ser classificado de três maneiras (Figura 1.3). O efeito é endócrino quando o hormônio é liberado na circulação e, em seguida, transportado pelo sangue para exercer um efeito biológico sobre células-alvo distantes. O efeito é parácrino quando o hormônio liberado de uma célula exerce um efeito biológico sobre uma célula vizinha, frequentemente localizada no mesmo órgão ou tecido. O efeito é autócrino quando o hormônio produz um efeito biológico sobre a mesma célula que o libera. Recentemente, foi proposto um mecanismo adicional de ação hormonal, em que um hormônio é sintetizado e atua intracelularmente na mesma célula que o produz. Esse mecanismo, denominado intrácrino, foi identificado nos efeitos do peptídeo relacionado com o paratormônio em células malignas, bem como em alguns dos efeitos dos estrogênios derivados dos androgênios.

Transporte dos hormônios
Os hormônios liberados na circulação podem circular em sua forma livre ou ligados a proteínas carreadoras, também conhecidas como proteínas de ligação. Essas proteínas atuam como reservatório para o hormônio e prolongam a meia-vida dele, isto é, o tempo durante o qual a concentração de determinado hormônio diminui em 50% de sua concentração inicial. O hormônio livre ou não ligado constitui a forma ativa, que se liga ao receptor hormonal específico. Por conseguinte, a ligação de um hormônio a sua proteína carreadora serve para regular a atividade hormonal, estabelecendo a quantidade de hormônio livre para exercer uma ação biológica. As proteínas carreadoras são, em sua maioria, globulinas sintetizadas no fígado. Algumas das proteínas de ligação são específicas para determinada proteína, como a de ligação do cortisol. Entretanto, sabe-se que proteínas como as globulinas e a albumina também se ligam aos hormônios. Como a maior parte dessas proteínas é sintetizada no fígado, a ocorrência de alterações na função hepática pode resultar em anormalidades nos níveis de proteínas de ligação, podendo afetar indiretamente os níveis totais dos hormônios. Em geral, a maioria das aminas, dos peptídeos e dos hormônios proteicos (hidrofílicos) circula em sua forma livre. Entretanto, uma notável exceção a essa regra é a ligação dos fatores de crescimento semelhantes à insulina a uma de seis diferentes proteínas de ligação de alta afinidade. Os hormônios esteroides e tireoidianos (lipofílicos) circulam ligados a proteínas de transporte específicas. A interação entre determinado hormônio e sua proteína carreadora encontra-se em equilíbrio dinâmico, possibilitando adaptações que impedem as manifestações clínicas de deficiência ou de excesso hormonal. A secreção do hormônio é rapidamente regulada após alterações nos níveis das proteínas transportadoras. Por exemplo, os níveis plasmáticos de proteína de ligação do cortisol aumentam durante a gravidez. O cortisol é um hormônio esteroide produzido pelo córtex da suprarrenal. A elevação dos níveis circulantes da proteína de ligação do cortisol leva a um aumento da capacidade de ligação do cortisol, com consequente redução dos níveis de cortisol livre. Essa redução do cortisol livre estimula a liberação hipotalâmica do CRH, que estimula a liberação do ACTH pela adeno-hipófise e, consequentemente, a síntese e a liberação do cortisol das glândulas suprarrenais. O cortisol, liberado em maiores quantidades, restaura os níveis de cortisol livre e impede a manifestação da deficiência de cortisol. Conforme assinalado anteriormente, a ligação de um hormônio a uma proteína de ligação prolonga sua meia-vida. A meia-vida de um hormônio está inversamente relacionada com sua remoção da circulação. A remoção dos hormônios da circulação também é conhecida como taxa de depuração metabólica: o volume de depuração plasmática do hormônio por unidade de tempo. Uma vez liberados na circulação, eles podem se ligar a seus receptores específicos em um órgão-alvo, sofrer transformação metabólica pelo fígado ou ser excretados na urina. No fígado, os hormônios podem ser inativados pelas reações de fase I (hidroxilação ou oxidação) e/ou de fase II (glicuronidação, sulfatação ou redução com glutationa) e, em seguida, excretados pelo fígado através da bile ou pelo rim. Em alguns casos, o fígado pode, na verdade, ativar um precursor hormonal, como na síntese de vitamina D, discutida no Capítulo 5. Os hormônios podem ser degradados em suas células-alvo pela internalização do complexo hormônio-receptor, seguida da degradação lisossomal do hormônio. Apenas uma fração muito pequena da produção total de hormônio é excretada de modo intacto na urina e nas fezes.

Nenhum comentário:

Postar um comentário